Cover

CARBON CALCULATOR TOOL v . .

Help About...

Scottish Government and SEPA users only:

The Scottish Government
Enter password
Sign in
Start Carbon Calculator

This tool calculates payback time for windfarm sited on peatlands using methods given in Nayak et al, 2008

(http://www.gov.scot/Publications/2008/06/25114657/0) and revised equations for GHG emissions (Nayak, D.R., Miller, D., Nolan, A., Smith, P. and Smith, J.U., 2010, Calculating carbon budgets of wind farms on Scottish peatland. Mires and Peat 4: Art. 9. Online: http://mires-and-peat.net/pages/volumes/map04/map0409.php

Admin

CARBON CALCULATOR TOOL v APPLICATION STATUS CONTROL	P.C.
Help Reference Code: Search	SILED.
Windfarm Name Version Methodology used for calculating emission factors Status Date Status	ro Og
No data available in table PreviousNext	ROJ (
Selected:	X

 Saved
 Signed-off
 Received
 Consented
 Refused
 Withdrawn

 Revert to original status

PECEIL CARBON CALCULATOR TOOL v . . • Will the site be drained on construction of the windfarm? If you already have an Application Reference, type it here (or paste it in the first box): • Is the soil at the site highly organic? • Does windfarm construction require a significant amount of deforestation? i.e. is removal in excess of keyholing the turbines within the forest boundary?

New application

Start

CoreInput

trenches 10. Additional peat 11. Improve Forestry input data Construction input data Save Signed off for submission	ement actions 12. Restoration after deco	mission factors 6. Borrow pits 7. Foundations and hard-standing 8. Access track missioning 13. Methodology & application details	ks 9. Cable
Note: Results are only available once ALL da	ata are correct and complete, and a new vers	ion will be created.	
Ref: Z92V-GTHK-IPJZ v MENU≡			PA PA
Help			
Core input data Forestry input data	a Construction input data		
Windfarm characteristics Page 1 of	12		
Expected values Dimensions	Minimum	Maximum	
Number of Turbines 4 Chapter 2: Project Description	4	4	
Duration of consent (years) 35 Chapter 2: Project Description	35	35	
Performance Power rating of 1 turbine (MW) 4 Chapter 2: Project Description	4	4	

Exp.	Min.	Max,	
39,745	38,340	41,149	•
7,670	7,399	7,942	20
17,135	16,530	17,741	~
1,388,285	1,339,229	1,437,341	
			7
Exp.	Min.	Max.	
	39,745 7,670 17,135 1,388,285	39,74538,3407,6707,39917,13516,5301,388,2851,339,229	39,74538,34041,1497,6707,3997,94217,13516,53017,7411,388,2851,339,2291,437,341

Total CO2 losses due to wind farm (tCO2 eq.)	Exp.	Min.	Max.
2. Losses due to turbine life (eg. manufacture, construction, decomissioning)	14,199	14,185	14,343
3. Losses due to backup	10,596	10,596	10,596
4. Lossess due to reduced carbon fixing potential	681	314	1,091
5. Losses from soil organic matter	8,030	-321	25,642
6. Losses due to DOC & POC leaching	4	0	3,574
7. Losses due to felling forestry	8,131	7,636	8,784
Total losses of carbon dioxide	41,642	32,410	64,031
8. Total CO2 gains due to improvement of site (t CO2 eq.)	Exp.	Min.	Max.
8a. Change in emissions due to improvement of degraded bogs	75	0	23
8b. Change in emissions due to improvement of felled forestry	0	0	0
8c. Change in emissions due to restoration of peat from borrow pits	0	0	0
8d. Change in emissions due to removal of drainage from foundations & hardstanding	0	0	0
Total change in emissions due to improvements	75	0	23

RESULTS	Exp.	Min.	Max.
Net emissions of carbon dioxide (t CO2 eq.)	41,717	32,433	64,031
Carbon Payback Time			
coal-fired electricity generation (years)	1.0	0.8	1.7
grid-mix of electricity generation (years)	5.4	4.1	8.7
fossil fuel-mix of electricity generation (years)	2.4	1.8	3.9

Ratio of soil carbon loss to gain by restoration (not used in Scottish applications)

A.

Payback Time - Charts

Payback Time

Core input data

	View			
Payback Time Devkask Time - Chartelanut Data			R.C.	
Print this page Carbon Calculator v1.7.0			N.F.). . 20/03/202 . 20/03/202
Ballykett Location: 52.672079 -9.459375 Greensource sustainable development limited				59
Core input data				JO PAR
Input data	Expected value	Minimum value	Maximum value	Source of data
Windfarm characteristics				
Dimensions				
No. of turbines	4	4	4	Chapter 2: Project Description
Duration of consent (years)	35	35	35	Chapter 2: Project Description
Performance				
Power rating of 1 turbine (MW)	4	4	4	Chapter 2: Project Description
Capacity factor	28.3	27.3	29.3	Chapter 2: Project Description
Backup				
Fraction of output to backup (%)	5	5	5	SNH Calculator Guidance
Additional emissions due to reduced thermal efficiency of the reserve generation (%)	10	10	10	Fixed
Total CO2 emission from turbine life (tCO2 MW ⁻¹) (eg. manufacture, construction decommissioning)	, Calculate wrt installed capacity	Calculate wrt installed capacity	Calculate wrt installed capacity	
Characteristics of peatland before windfarm development				
Type of peatland	Acid bog	Acid bog	Acid bog	Chapter 6: Biodiversity
Average annual air temperature at site (°C)	10.76	10.5	11	Chapter 10: Air and Climate
Average depth of peat at site (m)	2	0.5	2.8	Chapter 8: Soils and Geology
C Content of dry peat (% by weight)	55	50	60	Chapter 8: Soils and Geology
Average extent of drainage around drainage features at site (m)	10	5	15	Chapter 8: Soils and Geology
Average water table depth at site (m)	0.5	0.1	1	Chapter 8: Soils and Geology
Dry soil bulk density (g cm ⁻³)	0.1	0.09	0.11	Chapter 8: Soils and Geology
Characteristics of bog plants				

Emissions due to loss of soil organic carbon

Loss of C stored in peatland is estimated from % site lost by peat removal (table 5a), CO2 loss from removed peat (table 5b), % site affected by drainage (table 5c), and the CO2 loss from drained peat (table 5d).

5. Loss of soil C02

	Exp.	Min.
CO2 loss from removed peat (t CO2 equiv.)	8030.42	-321.32
CO2 loss from drained peat (t CO2 equiv.)	0	0
RESULTS		
Total CO2 loss from peat (removed + drained) (t CO2 equiv.)	8030.42	-321.32
Additional CO2 payback time of windfarm due to loss of soil C		
coal-fired electricity generation (months)	2.42	-0.1
grid-mix of electricity generation (months)	12.56	-0.52
fossil fuel - mix of electricity generation (months)	5.62	-0.23

CO₂ loss from removed peats

If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell

5b. CO2 loss from removed peat

	Exp.	Min.
CO2 loss from removed peat (t CO2)	12709.25	3128.43
CO2 loss from undrained peat left in situ (t CO2)	4678.83	3449.75
RESULTS		
CO2 loss atributable to peat removal only (t CO2)	8030.42	-321.32

Volume of Peat Removed

% site lost by peat removal is estimated from peat removed in borrow pits, turbine foundations, hard-standing and access tracks. If peat is removed for any other reason, this must be added in as additional peat excavated in the crusting input data entry.

 O_{n}

5a. Volume of peat removed	5
	Exp.
Peat removed from borrow pits	×.
Area of land lost in borrow pits (m2)	12100
Volume of peat removed from borrow pits (m3)	36300
Peat removed from turbine foundations	
Area of land lost in foundation (m2)	2025
Volume of peat removed from foundation area (m3)	607.5
Peat removed from hard-standing	
Area of land lost in hard-standing (m2)	18800
Volume of peat removed from hard-standing area (m3)	9400
Peat removed from access tracks	
Area of land lost in floating roads (m2)	7500
Volume of peat removed from floating roads (m3)	2250
Area of land lost in excavated roads (m2)	0
Volume of peat removed from excavated roads (m3)	0
Area of land lost in rock-filled roads (m2)	0
Volume of peat removed from rock-filled roads (m3)	0
Total area of land lost in access tracks (m2)	7500
Total volume of peat removed due to access tracks (m3)	2250
RESULTS	
Total area of land lost due to windfarm construction (m2)	54888
Total volume of peat removed due to windfarm construction (m3)	63020.5

Volume of peat drained

Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

5c. Volume of peat drained

CO₂ loss due to drainage

5d CO2 loss from drained neat

Note, CO2 losses are calculated using two approaches IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains to site detail. The new

Sc. volume of peat dramed		Su. CO2 loss from drained pear	
	Exp.	The second se	Exp
Total area affected by drainage around borrow pits (m2)	4800	Calculations of C Loss from Drained Land if Site is NOT Restored after Decomissioning	
Total volume affected by drainage around borrow pits (m3)	7200	Total GHG emissions from Drained Land (t CO2 equiv.)	885
Peat affected by drainage around turbine foundation and hardstanding		Total GHG emissions from Undrained Land (t CO2 equiv.)	885
Total area affected by drainage of foundation and hardstanding area (m2)	22240	Calculations of C Loss from Drained Land if Site IS Restored after Decomissioning	
Total volume affected by drainage of foundation and hardstanding area (m3)	5560	Losses if Land is Drained	
Peat affected by drainage of access tracks		CH4 emissions from drained land (t CO2 equiv.)	Э
Total area affected by drainage of access track(m2)	37500	CO2 emissions from drained land (t CO2)	936
Total volume affected by drainage of access track(m3)	1875	Total GHG emissions from Drained Land (t CO2 equiv.)	940
Peat affected by drainage of cable trenches		Losses if Land is Undrained	
Total area affected by drainage of cable trenches(m2)	41200	CH4 emissions from undrained land (t CO2 equiv.)	Э
Total volume affected by drainage of cable trneches(m3)	24720	CO2 emissions from undrained land (t CO2)	936
Drainage around additional peat excavated		Total GHG emissions from Undrained Land (t CO2 equiv.)	940
Total area affected by drainage (m2)	4577.34	RESULTS	
Total volume affected by drainage (m3)	4577.34	Total GHG emissions due to drainage (t CO2 equiv.)	
RESULTS			

Emission rates from soils

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included

5e. Emission rates from soils

	Exp.	Min.	Max.
Calculations following IPCC default methodology			
Flooded period (days/year)	178	178	178
Annual rate of methane emission (t CH4-C/ha year)	0.04	0.04	0.04
Annual rate of carbon disvide omission (+ 007 /he user)	ר ∋ר	ר ⊐כ	י זכ

7. Forestry CO2 loss

RECEIVED. 2903 RODA

Payback Time Payback Time Charteleput

CO₂ loss from forests - calculation using detailed management information Forest carbon calculator (Perks et al, 2009)

Total potential carbon squestration loss due to felling of forestry for the wind farm (t CO2)Total emissions due to cleared land (t CO2)Emissions due to harvesting operations (t CO2)Fossil fuel equivalent saving from use of felled forestry as biofuel (t CO2)Fossil fuel equivalent saving from use of replanted forestry as biofuel (t CO2)RESULTSTotal carbon loss associated with forest management(t CO2)

Emissions due to forest felling - calculation using simple management data

Emissions due to forestry felling are calculated from the reduced carbon sequestered per crop rotation. If the forestry was due to be removed before the planned development, this C loss is not attributable to the wind farm and so the area of forestry to be felled should be entered as zero.

	Exp.	Min.	Max.
Area of forestry plantation to be felled (ha)	17.6	17	18.5
Carbon sequestered (t C ha-1 yr-1)	3.6	3.5	3.7
Lifetime of windfarm (years)	35	35	35
Carbon sequestered over the lifetime of the windfarm (t C ha-1)	126	122.5	129.5
RESULTS			
Total carbon loss due to felling of forestry (t CO2)	8131.27	7635.9	8784.5
Additional CO2 payback time of windfarm due to management of forestry			
coal-fired electricity generation (months)	2.46	2.39	2.56
grid-mix of electricity generation (months)	12.72	12.38	13.27
fossil fuel - mix of electricity generation (months)	5.69	5.54	5.94

Gains due to site improvement

Note, CO2 losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The PCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data see Nayak et al, 2008 -

Degraded Bog	
	Exp.
1. Description of site	
Area to be improved (ha)	3.16
Depth of peat above water table before improvement (m)	0.1
Depth of peat above water table after improvement (m)	0
2. Losses with improvement	
Improved period (years)	5
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.501
CH4 emissions from improved land (t CO2 equiv.)	118.454
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.737
CO2 emissions from improved land (t CO2 equiv.)	5.966
Total GHG emissions from improved land (t CO2 eqiv.)	124.42
	
Borrow Pits	
	Exp.

	=np:
1. Description of site	
Area to be improved (ha)	0
Depth of peat above water table before improvement (m)	0
Depth of peat above water table after improvement (m)	0
2. Losses with improvement	
Improved period (years)	24
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.501
CH4 emissions from improved land (t CO2 equiv.)	0
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.737
CO2 emissions from improved land (t CO2 equiv.)	0
Total GHG emissions from improved land (t CO2 eqiv.)	0

Felled Forestry		
	Exp.	Min.
1. Description of site	2	
Area to be improved (ha)	0	
Depth of peat above water table before improvement (m)	0	
Depth of peat above water table after improvement (m)	0	
2. Losses with improvement		
Improved period (years)	15	
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.501	
CH4 emissions from improved land (t CO2 equiv.)	0	
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.737	0.(
CO2 emissions from improved land (t CO2 equiv.)	0	
Total GHG emissions from improved land (t CO2 eqiv.)	0	
 .		

Foundations & Hardstanding

	Exp.	Min.
1. Description of site		
Area to be improved (ha)	0	
Depth of peat above water table before improvement (m)	0	
Depth of peat above water table after improvement (m)	0	
2. Losses with improvement		
Improved period (years)	32.5	
Selected annual rate of methane emissions (t CH4-C ha-1 yr-1)	0.501	
CH4 emissions from improved land (t CO2 equiv.)	0	
Selected annual rate of carbone dioxide emissions (t CO2 ha-1 yr-1)	0.737	0.(
CO2 emissions from improved land (t CO2 equiv.)	0	
Total GHG emissions from improved land (t CO2 eqiv.)	0	

Payback Time Payback Time - Chartelphu

Emissions due to backup power generation

CO2 loss due to back up is calculated from the extra capacity required for backup of the windfarm given in the input data.

Wind generated electricity is inherently variable, providing unique challenges to the electricity generating industry for provision of a supply to meet consumer demand (Netz, 2004). Backup power is required to accompany wind generation to stabilise the supply to the consumer. This backup power will usually be obtained from a fossil fuel source. At a high level of wind power penetration in the overall generating mix, and with current grid management techniques, the capacity for fossil fuel backup may become strained because it is being used to balance the fluctuating consumer demand with a variable and highly unpredictable output from wind turbines (White, 2007). The Carbon Trust (Carbon Trust/DTI, 2004) concluded that increasing levels of intermittent generation do not present major technical issues at the percentages of renewables expected by 2010 and 2020, but the UK renewables target at the time of that report was only 20%. When national reliance on wind power is low (less than ~20%), the additional fossil fuel generated power requirement can be considered to be insignificant and may be obtained from within the spare generating capacity of other power sectors (Dale et al, 2004). However, as the national supply from wind power increases above 20%, without improvements in grid management techniques, emissions due to backup power generation may be come more significant. The extra capacity needed for backup power generation is currently estimated to be 5% of the rated capacity of the wind plant if wind power contributes more than 20% to the national grid (Dale et al 2004). Moving towards the SG target of 50% electricity generation from renewable sources, more short-term capacity may be required in terms of pumped-storage hydro-generated power, or a better mix of offshore and onshore wind generating capacity. Grid management techniques are anticipated to techniques, it is suggested that 5% extra capacity should be assumed for backup power generation if wind power contributes more than 20% to the national grid. At

Assumption: Backup assumed to be by fossil-fuel-mix of electricity generation. Note that hydroelectricity may also be used for backup, so this assumption may make the value

	Exp.	Min.	Max.
Reserve energy (MWh/yr)	7,008	7,008	7,008
Annual emissions due to backup from fossil fuel-mix of electricity generation (tCO2/yr)	303	303	303
RESULTS			
Total emissions due to backup from fossil fuel-mix of electricity generation (tCO2)	10,596	10,596	10,596

1. CO2 emission saving

REC

Emissions due to turbine life

Payback Time

The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

29.3 Capacity factor calculated from forestry data Capacity factor - Direct input Exp. Min. Wind speed **Capacity factor** Average site Capacity factor (%) 27.3 28.3 Value type (%) windspeed (m/ Area name ratio

	Exp.	Min.	Max.
Annual energy output from windfarm (MW/yr)			
RESULTS			
Emissions saving over coal-fired electricity generatio	39,745	38,340	41,149
Emissions saving over grid-mix of electricity generati	7,670	7,399	7,942
Emissions saving over fossil fuel - mix of electricity g	17,135	16,530	17,741

2. CO2 loss turbine life

RECC

Emissions due to turbine life

Payback Time

The carbon payback time of the windfarm due to turbine life (eg. manufacture, construction, decomissioning) is calculated by comparing the emissions due to turbine life with carbon-savings achieved by the windfarm while displacing electricity generated from coal-fired capacity or grid-mix.

Calculation of emissions with relation to installed capacity	Exp.	Mi	Direct input of emissions due to turbine life	Exp. Min.
Emissions due to turbine frome energy output (t CO2)	3270		Emissions due to turbine life (tCO2/windfarm)	22
Emissions due to cement used in construction (t CO2)	1119			× .

RESULTS

	Exp.	Min.	Max.
Losses due to turbine life (manufacture, construction, etc.) (t CO2)	14199	14185	14343
Additional CO2 payback time of windfarm due to turbine life			
coal-fired electricity generation (months)	4	4	4
grid-mix of electricity generation (months)	22	23	22
fossil fuel - mix of electricity generation (months)	10	10	10

4. Loss CO2 fixing pot.

Payback Time

Emissions due to loss of bog plants

4. Los	s CO2 fixing pot.		•
/back Time /back Time _ ChartsInput Data			Pro Co
ions due to loss of bog plants I C fixation by the site is calculated by multiplying area of the windfarm by th	e annual C accumulation	due to bog plant t	fixation.
	Exp.	Min.	Max.
here carbon accumulation by bog plants is lost (ha)	16.52		
	10.52	8.92	22.88
	41	8.92 35	22.88 48
al loss of carbon accumulation up to time of restoration (tCO2 eq./ha)			
loss of carbon accumulation up to time of restoration (tCO2 eq./ha) LTS			
loss of carbon accumulation up to time of restoration (tCO2 eq./ha) LTS loss of carbon fixation by plants at the site (t CO2)	41	35	48
loss of carbon accumulation up to time of restoration (tCO2 eq./ha) LTS loss of carbon fixation by plants at the site (t CO2) ional CO2 payback time of windfarm due to loss of CO2 fixing potential	41	35	48
al loss of carbon accumulation up to time of restoration (tCO2 eq./ha) ULTS al loss of carbon fixation by plants at the site (t CO2) litional CO2 payback time of windfarm due to loss of CO2 fixing potential coal-fired electricity generation (months) grid-mix of electricity generation (months)	41 681	35 314	48 1091

RECC

Payback Time ChartsInput Data			ne c	
Emissions due to loss of DOC and POC Note, CO2 losses from DOC and POC are calculated using a simple ap eaching.	proach derived from generic esti	mates of the perc	entage of the to	tal CO2 bass that is due to DOC or l
	Exp.	Min.	Max.	03
Gross CO2 loss from restored drained land (t CO2)	0.00	0.00	7126.01	S.
Gross CH4 loss from restored drained land (t CO2 equiv.)	0.00	0.00	0.00	22
Gross CO2 loss from improved land (t CO2)	0.00	0.00	0.00	×
Gross CH4 loss from improved land (t CO2 equiv.)	118.45	0.00	262.84	
Total gaseous loss of C (t C)	2.90	0.00	1949.69	
Total C loss as DOC (t C)	0.75	0.00	779.88	
Total C loss as POC (t C)	0.23	0.00	194.97	
RESULTS				
Total CO2 loss due to DOC leaching (t CO2)	2.76	0.00	2859.57	
Total CO2 loss due to POC leaching (t CO2)	0.85	0.00	714.89	
Total CO2 loss due to DOC & POC leaching (t CO2)	3.61	0.00	3574.47	
Additional CO2 payback time of windfarm due to DOC & POC				
coal-fired electricity generation (months)	0	0	1	
grid-mix of electricity generation (months)	0	0	5	
fossil fuel - mix of electricity generation (months)	0	0	2	